H=16t^2+184t

Simple and best practice solution for H=16t^2+184t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=16t^2+184t equation:



=16H^2+184H
We move all terms to the left:
-(16H^2+184H)=0
We get rid of parentheses
-16H^2-184H=0
a = -16; b = -184; c = 0;
Δ = b2-4ac
Δ = -1842-4·(-16)·0
Δ = 33856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{33856}=184$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-184)-184}{2*-16}=\frac{0}{-32} =0 $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-184)+184}{2*-16}=\frac{368}{-32} =-11+1/2 $

See similar equations:

| 1/2(4x+2)=17 | | 5y-18=4y+16 | | 20+2(t-10)+7=9t+11-7t-4 | | 12x-5x+170=12x-90 | | -3n(n-5)=3(1-3n) | | X^2-2x+3=83 | | (6+x)=3=12 | | 11x-25-5x-5=42 | | 4x+7=15x | | 20=17+x | | -8(-7x-2)=2x+16 | | 6g-17=19 | | 3m=–18 | | x=6x±2 | | 15x-25+5=10(x+2) | | 7/r=7/2 | | 2(y-5)-1=-5(-3y+5)-5y | | 4(4+3n)=-8+4n | | 2v/17=8 | | 5y-18=3y+34 | | -2x+20=3x+60 | | 2(s-89)=-56 | | 15x-25+5=10(x+2 | | 4-2(x-5)+x=-6 | | 56=6w−7 | | (10x-10)=(9x+7)=180 | | 6n+n-1=7n-3 | | 9+21=-3(3x-10) | | 1=h/12+5 | | -21+2x=23 | | 9+21=-3(3x-10 | | 26=m+(–14) |

Equations solver categories